

The following relationships exist with this disclosure.

Gradalis, Inc. - shareholder

Clinical Update of bifunctional (bi)-shRNAi Nanoplex Technology in Cancer

Traditional non-targeted therapeutics (e.g. chemotherapy) shifts the signal fitness landscape of cancer enabling generation of a new resistance strategy; in essence, acting as a selection factor allowing tumor cell rebound.

Molecular Signal Strategy Mechanism

However Targeted therapeutics could have similar limitations

- Wrong primary target
- Not all pertinent targets are addressed
- Insufficient target control
- Inadequate PK
 - Inadequate delivery to tumor
 - Limited intra-tumoral penetration
 - Limited homogenous distribution
 - Limited tumor cellular uptake

Clinical Trials of RNAi-Based Cancer Therapeutics							
Drug	CALAA-01	ALN-VSP02	TKM-080301	siRNA- tenacinC	Atu027	FANG [™] vaccine	bi-sh RNAi STMN1 Nanoplex
Phase	I	l	I	1	l	I, II	I
Cleavage Products	Yes	Yes VEGF No KSP	Yes	Unk	Unk	N/A	Yes
Delivery	cyclodextrin polymer	lipid nanoparticle	lipid nanoparticle	naked	lipoplex	ex-vivo by electroporatio n	Bilamellar invaginated vesicle
Route	IV	IV	IV	IT	IV	ID	IT
Target	RRM2	KSP/VEGF	polo-like kinase 1 (PLK1)	tenascin-C	protein kinase N3	furin	STMN1
RNAi	unmodified siRNA	chemically modified siRNA	chemically modified siRNA	160bp double- stranded RNA	chemically modified siRNA	bifunctional- short hairpin	bifunctional- short hairpin
Current Enrollment	(36)	(41)	(24)	(53)	(34)	(121)	(8)
References	Davis et al <i>Nat</i> 464: 1067-1070 (2010), a	Cervantes et al <i>J Clin</i> Oncol 29 : (2011), a	Ramanathan et al AACR 2013 Annual Meeting, a	Rolle et al Cancer Biol Ther 9 : 396- 406 (2010)	Santel et al <i>Clin Cancer</i> <i>Res</i> 16 : 5469- 80 (2010), a	Senzer NN, et al. <i>Mol Ther.</i> 2012:20(3):67 9-686.	N/A

bi-shRNAi Platform Targeting Attack Sites: 2-Front Attack

First Clinical Experience with bi-shRNAi Platform FANG™ Phase I Trial Design (BB-IND-14205)

- 2 dose levels (1x10⁷ / 2.5x10⁷ cells/inj)
- Monthly ID injection (maximum of 12 months)
- Two groups of patients: other options prior to FANG™ vs. no options
 → FANG™
- ELISPOT for T-cell activation at baseline and follow up time points

Target Activity of FANG Vector

Survival of Treated Patients Since Treatment Start on FANG™ Phase I Protocol°

Phase I FANG vs. No-FANG Survival

Survival Relationship to Immune Response

Survival Based on Month 4 ELISPOT Response

Preliminary Disease-Free Survival Interval Demonstrated in Phase II Trial of III/IV Ovarian Cancer

DNA based "knockdown" attack

Rao et al CGT 17:780, 2010 Phadke et al DNA Cell Biol 30:715, 2011 Liu et al PLoS ONE 7:e40452, 2012

Bilamellar Invaginated Vesicle (BIV) Liposome with Reversible Masking and Peptidomimetic Decoration

pbi-shRNA™ in vivo studies

with IV delivery of BIV pbi-shRNA™ to STMN1 and PDX-1 Kaplan-Meier Estimator for Time to Progression

Phadke et al., DNA & Cell Biol 2011 May 25 Liu et al., Cancer 117(4):723-3, 2011.

Focused biodistribution and 200-fold increased targeted expression with in vivo targeting and reversible masking 14 h after IV injection

Shi Q, Templeton N, et al: Gene Therapy 2010. 17(9): 1085-97 (modified)

Pre-Clinical Development

- Stathmin (STMN1) is a critical microtubule modulator highly expressed in a variety of human malignancies related to cancer survival
- Bioinfromatic analysis demonstrated STMN1 protein expansion as clinical target in melanoma (Nemunaitis et al 2007 Cancer Gene Therapy)

Pre-Clinical Development bi-shRNA vs. siRNA to same sequence

GMP Manufacturing (Gradalis, Inc.)

Process for making stock BIV NPs

Weigh DOTAP and Cholesterol

Dissolve in Chloroform

Rotory-evaporate to a thin film

Rehydrate lipid film in D5W

Sonicate and Extrude to create BIV NPs

QC and final fill

QA testing and release

Process for making stock plasmid DNA

Bacterial cell fermentation

↓

Alkaline lysis and filtration

↓

Anion exchange (AEX) chromatography

↓

Hydrophobic interaction (HIC) chromatography

↓

Tangential flow (TFF) filtration

↓

Sterile filtration and final fill

↓

QA testing and release

Process for making plasmid DNA + BIV NPs

Dilute stock BIV NPs in D5W

Dilute stock plasmid in D5W

Mix diluted plasmid into diluted BIV NPs

QC and final fill

QA testing and release

GMP Manufacturing (Gradalis, Inc.) Plasmid DNA + BIV NPs Release Specifications and Characterization

Release Test	Test Method	Specification
OD400	Spectrophotometer	0.65-0.95
Particle size	ZetaSizer Nano	< 500nm
Zeta Potential	ZetaSizer Nano	> 40mV
Endotoxin	GLP Kinetic Chromogenic LAL	< 0.5 EU/ml
Sterility	21 CFR 610.12	No growth
Chloroform	Gas Chromatography	<75ppM
DNA Banding	Restriction Digest	Not I = 4220 bp Sal I = 4220 bp Not I + Sal I = 3968 & 252 bp
mRNA Expression	RT-qPCR	cT ≤ 26

Pre-Clinical Development

pbi-shRNA™ STMN1 + BIV NPs Reduces Primary Tumorgraft Growth

IT injections

(Phadke et al 2011 DNA and Cell Biology)

No limitations to toxicity, pharmacokinetics in mice and biorelevant rats

pbi-shRNA STMN1 Phase I Clinical Trial (BB-IND- 14938) Study Design

Cohort	Number of Patients	Dose (mg DNA / injection)	Dose (mg / kg / 70kg)
1	4	0.7	0.010
2	4	1.4	0.020
3	4	2.0	0.028
4	4	2.7	0.038
5	4	3.7	0.053

- Single IT injection, 4 patients / cohort
- Premeds Dexamethasone, Indocin, and Acetaminophen (BB-IND 10718, 12233, 13744)
- Whole blood PK at baseline; 30 sec; 5 & 10 min; 1, 6, 24, and 48 hr
- Tumor biopsy at baseline; 24 or 48 hr; day 7

Gradalis STMN1 Phase I Clinical Trial Patient Characteristics

Cohort #	Patient #	Age / Sex	Cancer	Site	Dose (mg DNA)
1	1002	80 / F	Angiosarcoma	Arm	0.7
	1004	60 / F	Anal	Labia	0.7
	1005	70 / M	Colorectal	Chest	0.7
	1006	63 / F	Ovarian mets	Axillary Lymph Node	0.7
2	1007	59 / M	Melanoma	Right Axilla	1.4
	1008	49 / F	Breast	Chest	1.4
	1009	70 / M	Colorectal	Abdomen	1.4
	1010	50 / F	Breast	Chest	1.4

Gradalis STMN1 Phase I Clinical Trial Whole blood PK Sample Analysis - Results°

Avg pbi-shRNA-STMN1 Detected (cohort 1, angiosarcoma only)

Avg pbi-shRNA-STMN1 Detected (cohort 2, n=4)

ASGCT 2013 Abstract #510

- No toxic efficient was observed in the 8 patients up to 30 days of observation
- ° Cleavage product demonstrated in cohorts 1 and 2 (7/7 patients, NGS) ----- ASGCT 2013 Abstract # 234

Phase I bi-shRNAi STMN1 Nanoplex Results

- Suggest single dose safety
- Demonstrate circulating plasmid
- Demonstrate cleavage product
- Justify IV administration assessment (based on post IT injection achieved plasma concentrations)

Preclinical assessment of the bi-shRNAi platform with several other targets

PDX-1

C. Brunicardi

UCLA

(ASGCT 2013 Abstract # 272, 659)

SRC-3

B. O' Malley

Baylor College

(ASGCT 2013 Abstract # 459)

AR

N. Weigel

Baylor College

KRAS Multiplex

D. Rao

Gradalis

(ASGCT 2013 Abstract # 317)

Beta TC-6 SCID survival in bishRNA PDX-1 BIV therapy

Bifunctional shRNA SRC3 BIV reduces tumor volume in MDA-MB-231 model

RNA Expression Real Time RT-PCR

Triple Constructs Are Very Effective in Mutant Knockdown Without Affecting wt Expression (Restriction Enzyme Digest)

	PANC1	Empty vector	G12D	Triple DVR	Triple CDV	Triple DVR	Triple CDV	G12V
Mutant	80%	84%	82%	70%	63%	9%	12%	83%
wt	20%	16%	18%	30%	37%	91%	88%	17%

Conclusion

- bi-shRNAi platform technology demonstrates clinically relevant target expression knockdown activity
- Further preclinical and clinical testing is underway