Systemic Administration of Bifunctional shRNA Lipoplex Targeting PDX-1 for Murine Model of Insulinoma and Pancreatic Cancer.


1Gradalis, Inc., Dallas, TX; 2Mary Crowley Cancer Research Centers, 3Texas Oncology PA, and 4Baylor Sammons Cancer Center, Dallas, TX, 5Department of Surgery, Baylor College of Medicine, Houston, TX.

Despite current multimodality therapy, patients with metastatic pancreatic cancer (PC) survive 4-6 months. New therapeutic strategies for PC are urgently needed. The transcription factor pancreatic duodenal homeobox transcription factor (PDX-1) is a master regulator of embryologic pancreatic development and regulates insulin expression and other islet hormones in the adult pancreas. We and others found PDX-1 is overexpressed in pancreatic tumor and may play a key role in proliferation and invasion of human PC. Additionally, overexpression of PDX-1 is a well established hallmark for Insulinoma resulting in hyperinsulinemia with uncontrollable hypoglycemia. PDX-1 is a rational target gene for expression knockdown by RNA interference (RNAi) for the treatment of PC and Insulinoma. Our previous study has shown silencing PDX-1 expression in pancreatic cancer cell line PANC-1 inhibited cell proliferation in vitro and suppressed tumor growth in vivo with increased tumor cell apoptosis. We have recently developed a novel bifunctional shRNA strategy with high efficiency, specificity, durability and required lower dose for target gene knockdown. The bifunctional shRNA for PDX-1 (bi-sh-PDX-1) achieved knockdown 90% of PDX-1 protein within 48 hours. This study is designed to demonstrate efficacy of bi-sh-PDX-1 in vivo with a murine model for Insulinoma and PC. Methods: In the insulinoma model SCID mice were implanted with 1 x 10^6 β-TC-6 cells by intraperitoneal (IP) injection. In the PC model SCID mice were implanted with 5 x 10^5 PANC-1 cells by IP injection. Two weeks later, mice were randomly divided into two groups for each model; one group was given lipoplex (DOTAP:Cholesterol liposome plasmid complex) containing 35 μg of control vector (plasmids without shRNA insert) and the second group was given lipoplex containing 35 μg of either mouse specific bi-msh-PDX-1 (for insulinoma model) or human specific bi-hsh-PDX-1 (for PC model) via tail vein injection. Two repeated deliveries were made every 2 weeks for a total of 3 injections. Blood insulin and glucose levels were monitored at regularly scheduled intervals. At 2 weeks, 10 weeks and 18 weeks after the third injection, 6 mice from each group were killed for pathology and tumor evaluation. Three cycles of treatment were well tolerated. Bi-sh-PDX-1 treated mice showed significant elevation of fasting glucose levels in contrast to the gradual depression in the vehicle treated mice for the insulinoma model (P<0.05) at 171.4±10.6 vs 129.4±16.5, 171.8±11.5 vs 116.8±14 and 170.4±21.0 vs 73.0±2.6 on day 7 after 1st, 2nd and 3rd treatment cycle, respectively. However, there is no significant change of glucose levels on PANC-1 bearing tumor models between treatment with bi-hsh-PDX-1 and empty vehicle at each treatment cycle. Kaplan-Meier survival analysis, pathology and tumor evaluation will be reported.